Уважаемый Валерий Григорьевич!

Направляю в Ваш адрес отзыв ведущей организации на диссертацию Богомоловой С.А. «Исследование и разработка методов повышения эффективности процессов контроля состояния испытательного оборудования при производстве тонкоплёночных солнечных модулей», представленной на соискание учённой степени кандидата технических наук по специальности 05.11.15 – Метрология и метрологическое обеспечение.

Приложение: отзыв на 6 листах в 2 экз.

Ученый секретарь секции 1, к.х.н. 

Н.Т. Вагапова
УТВЕРЖДАЮ
Генеральный директор
АО «НПП «Квант»
А.В. Некрасов
2016 г.

ОТЗЫВ
ведущей организации АО «НПП «Квант» на диссертационную работу
Богомоловой Светланы Анатольевны «Исследование и разработка методов
повышения эффективности процесса контроля состояния испытательного
оборудования при производстве тонкоплёночных солнечных модулей»,
представленную на соискание ученой степени кандидата технических наук
по специальности 05.11.15 - «Метрология и метрологическое обеспечение».

Актуальность работы
В настоящее время солнечные фотоэлектрические установки находят
всё более широкое применение для электроснабжения наземных
потребителей. С ростом мощности отдельных фотоэлектрических установок
возникает острая необходимость удовлетворения двух противоречивых
требований - повышения КПД установок и снижения стоимости вырабатываемой электроэнергии. Одним из перспективных решений данной проблемы является использование в данных установках
фотоэлектрических модулей (ФЭМ) на основе тонких плёнок
полупроводниковых материалов. Тонкоплёночные технологии обеспечивают
существенные конкурентные преимущества фотоэлектрической продукции в
сравнении с традиционными технологиями на основе объемных кристаллических материалов за счет возможности формирования высокоэффективных многослойных структур и меньшей энерго- и материоемкости. Одним из направлений развития тонкопленочных технологий для ФЭМ является создание многопереходных структур на основе слоев тонких плёнок аморфного гидрогенизированного (a-Si) и микрокристаллического (μc-Si) кремния. Такие ФЭМ сохраняют все преимущества фотопреобразователей на основе однопереходного кристаллического кремния, обладая одновременно большей энерго производительностью и более низкой стоимостью их изготовления в условиях масштабного производства.

При конструировании фотоэлектрических станций и проектировании солнечных установок требуется точная и достоверная информация о значениях нормируемых электрических параметров выпускаемых ФЭМ, которую получают в результате выходного контроля качества фотоэлектрической продукции на производстве. Для его осуществления разрабатывают соответствующие системы контроля, которые объединяют в своей структуре организационные положения и технические устройства, предназначенные для получения результатов с определенными показателями достоверности и точности.

Решаемые в диссертационной работе задачи по формированию системы выходного контроля тонкопленочных ФЭМ по фотоэлектрическим параметрам в условиях высокотехнологичного производства и установлению критериев точности и достоверности результатов контроля по своей актуальности полностью соответствуют современному этапу развития солнечной фотоэнергетики в России.
Новизна исследований и полученных результатов.
Как показал анализ диссертационной работы Богомоловой С.А., наибольшую значимость и научную новизну имеют следующие результаты:

1. Разработана система выходного контроля тонкоплёночных ФЭМ, позволяющая учитывать влияние распределений вероятностей фотоэлектрических параметров и их неопределённостей на достоверность результатов контроля в производственных условиях.

2. Сформирована имитационная модель системы допускового контроля, которая позволяет оценивать показатели производительности оборудования контроля при текущем объёме производства и выявлять потенциал для повышения загруженности и эффективности работы измерительных стендов. Получены оценки показателей производительности «максимальное количество ФЭМ в очереди», «коэффициент занятости оборудования» при заданной интенсивности поступления ФЭМ на контроль, равной 25 ФЭМ/час.

3. Сформированы модели расширенных неопределённостей результатов измерений фотоэлектрических параметров многопереходных ФЭМ, которые позволили определить вклады оптических, электрических, температурных и «эталонных» составляющих. Установлено, что уменьшение суммарных неопределённостей фотоэлектрических параметров многопереходных ФЭМ в производственных условиях возможно за счет снижения вкладов «эталонных» и оптических составляющих.

4. Сформированы аналитическая и имитационная модели, описывающие влияние характеристик распределений вероятностей фотоэлектрических параметров и их неопределённостей, положений границ полей допусков на оценки показателей достоверности. В результате моделирования были спрогнозированы значения показателей достоверности контроля многопереходных ФЭМ в производственных условиях. Сходимость результатов моделирования подтвердила пригодность имитационной модели.
для детального исследования достоверности результатов контроля многопереходных ФЭМ.

5. Проведен анализ метрологического обеспечения системы выходного контроля и предложен метод калибровки импульсного имитатора солнечного излучения по энергетической освещённости с использованием двух ФЭМ (однопереходного и многопереходного), учитывающий структурные и конструктивные особенности контролируемых ФЭМ и экспериментального оборудования. Реализация данного метода калибровки позволила снизить вклады «эталонной» и оптической составляющих в бюджетах суммарных неопределённостей результатов измерений тока короткого замыкания, напряжения холостого хода и максимальной выходной мощности ФЭМ.

Достоверность полученных в диссертационной работе результатов, базировавшихся на применении различных методов имитационного моделирования, и сопоставлении их с экспериментальными данными, не вызывает сомнений и подтверждается их апробацией в научных статьях и докладах на конференциях.

Научная и практическая значимость результатов

Работа является законченным научным исследованием и выполнена на достаточно высоком уровне. Проведённые исследования можно охарактеризовать как обоснованные научно-практические разработки, обеспечивающие решение важных прикладных задач в области метрологического обеспечения выходного контроля тонкоплёночных ФЭМ.

Практическое значение проведенных исследований подтверждено внедрением разработанных элементов метрологического обеспечения в ООО «Хевел» (г. Новочебоксарск).

По теме диссертации подготовлено 17 печатных работ, в том числе четыре были опубликованы в рецензируемых журналах, входящих в перечень ВАК, 14 трудов конференций и тезисов докладов
Общая оценка диссертационной работы

Содержание диссертации характеризуется внутренним единством, стиль изложения обеспечивает доступное восприятие материала. Оформление работы соответствует требованиям ВАК Министерства образования и науки РФ. В тексте содержится достаточное количество иллюстраций и таблиц, текст регулярно сопровождается ссылками на публикации.

Однако по диссертационной работе можно сделать следующие замечания, касающиеся полноты и четкости изложения материала по отдельным вопросам:

1. Во второй главе диссертационной работы приведен детальный анализ источников неопределённостей фотоэлектрических параметров, что является трудноосуществимой задачей в условиях производства. Однако в тексте диссертации отсутствуют упоминания об организации, предоставившей экспериментальное оборудование и средства для проведения данного исследования.

2. В тексте диссертации не приведена информация об измерительной лаборатории (центре), предоставившей эталонные ФЭМ для калибровки имитатора солнечного излучения.

3. В диссертационной работе недостаточно конкретно определена область использования системы контроля, не приведена информация о возможности её использования при осуществлении выходного контроля ФЭМ с различными номинальными значениями фотоэлектрических параметров.

Однако перечисленные замечания не снижают новизну и качество проведённого исследования, а диссертационная работа Богомоловой С.А. в целом оставляет благоприятное впечатление.

Таким образом, диссертация Богомоловой С.А. является завершенной научно-квалификационной работой, в которой содержится решение важных прикладных задач в области метрологического обеспечения выходного контроля тонкоплёночных ФЭМ. Диссертация соответствует требованиям п.9
Положения «О присуждении ученых степеней», утвержденного постановлением Правительства Российской Федерации № 842 от 24.09.2013 (ред. от 30.07.2014), а её автор, Богомолова Светлана Анатольевна, достойна присуждения учёной степени кандидата технических наук по специальности 05.11.15 - «Метрология и метрологическое обеспечение».

Автореферат диссертации и публикации соискателя достаточно полно и правильно отражают основное содержание работы.

Диссертация и отзыв рассмотрены и обсуждены на заседании секции № 1 «06» мая 2016 г., протокол № 18.

Главный конструктор по фотоэнергетике АО «НПП «Квант», д.т.н., профессор

М.Б. Каган

«06» мая 2016 г.

Начальник отдела, к.ф.-м.н.

А.Ф. Милованов

«06» мая 2016 г.